Trả lời câu hỏi Toán 8 Tập 2 Bài 2 trang 59: Tam giác ABC có AB = 6cm; AC = 9cm.
Lấy trên cạnh AB điểm B’, trên cạnh AC điểm C’ sao cho AB’ = 2cm; AC’ = 3cm (h.8).
1) So sánh các tỉ số
2) Vẽ đường thẳng a đi qua B’ và song song với BC, đường thẳng a cắt AC tại điểm C”.
a) Tính độ dài đoạn thẳng AC”.
b) Có nhận xét gì về C và C’ và về hai đường thẳng BC và B’C’?
Lời giải
Trả lời câu hỏi Toán 8 Tập 2 Bài 2 trang 60: Quan sát hình 9.
a) Trong hình đã cho có bao nhiêu cặp đường thẳng song song với nhau?
b) Tứ giác BDEF là hình gì?
c) So sánh các tỉ số và cho nhận xét về mối liên hệ giữa các cặp cạnh tương ứng của hai tam giác ADE và ABC.
Lời giải
a) Trong hình có hai cặp cạnh song song: DE // BC và EF // AB
b) Tứ giác BDEF là hình bình hành vì có các cặp cạnh đối song song với nhau
c) Tứ giác BDEF là hình bình hành ⇒ DE = BF = 7
Ba cạnh của ΔADE tương ứng tỉ lệ với ba cạnh của ΔABC
Trả lời câu hỏi Toán 8 Tập 2 Bài 2 trang 62: Tính độ dài x của các đoạn thẳng trong hình 12.
Lời giải
Áp dụng định lí Ta – lét ta có:
– Hình a:
– Hình b:
– Hình c:
Bài 6 (trang 62 SGK Toán 8 tập 2): Tìm các cặp đường thẳng song song trong hình 13 và giải thích vì sao chúng song song.
Lời giải:
Bài 7 (trang 62 SGK Toán 8 tập 2): Tính các độ dài x, y trong hình 14.
Lời giải:
Bài 8 (trang 63 SGK Toán 8 tập 2): a) Để chia đoạn thẳng AB thành ba đoạn thẳng bằng nhau, người ta đã làm như hình 15.
Hãy mô tả cách làm trên và giải thích vì sao các đoạn thẳng AC, CD, DB bằng nhau?
b) Bằng cách làm tương tự, hãy chia đoạn thẳng AB cho trước thành 5 đoạn bằng nhau. Hỏi có cách nào khác với cách làm như trên mà vẫn có thể chia đoạn thẳng AB cho trước thành 5 đoạn thẳng bẳng nhau?
Lời giải:
a) – Mô tả cách làm:
+ Vẽ đoạn thẳng PQ song song với AB, PQ có độ dài bằng 3 đơn vị.
+ E, F nằm trên PQ sao cho PE = EF = FQ = 1. Xác định giao điểm O của hai đoạn thẳng PB và QA
+ Vẽ các đường thẳng EO, FO cắt AB tại C và D.
– Chứng minh AC = CD = DB:
b) Tương tự chia đoạn thẳng AB thành 5 đoạn bằng nhau thực hiện như hình vẽ sau (hình 15-1 a):
Ta có thể chia đoạn thẳng AB thành 5 đoạn bằng nhau như sau (hình 15-1 b):
Vẽ 6 đường thẳng song song cách đều nhau (có thể dùng 6 đường kẻ liên tiếp trong tập viết). Đặt đầu mút A và B ở hai đường thẳng ngoài cùng thì các đường thẳng song song cắt AB chia thành 5 phần bằng nhau.
Bài 9 (trang 63 SGK Toán 8 tập 2): Cho tam giác ABC và điểm D trên cạnh AB sao cho AD = 13,5cm, DB = 4,5cm. Tính tỉ số các khoảng cách từ các điểm D và B đến cạnh AC.
Lời giải:
Gọi DH và BK lần lượt là khoảng cách từ D và B đến cạnh AC.
Ta có AB = AD + DB
=> AB = 13,5 + 4,5 = 18 (cm)
Vì DH // BK (cùng vuông góc với AC) nên áp dụng hệ quả định lí Ta-lét ta có:
Bài 10 (trang 63 SGK Toán 8 tập 2): Tam giác ABC có đường cao AH. Đường thẳng d song song với BC cắt các cạnh AB, AC và đường cao AH theo thứ tự tại các điểm B’, C’ và H’ (h.16).
Lời giải:
Bài 11 (trang 63 SGK Toán 8 tập 2): Tam giác ABC có BC = 15cm. Trên đường cao AH lấy các điểm I, K sao cho AK = KI = IH. Qua I và K vẽ các đường EF // BC, MN // BC (h.17).
a) Tính độ dài các đoạn thẳng MN và EF.
b) Tính diện tích tứ giác MNFE, biết rằng diện tích của tam giác ABC là 270cm2.
Hình 17
Lời giải:
Bài 12 (trang 64 SGK Toán 8 tập 2): Có thể đo được chiều rộng của một khúc sông mà không cần phải sang bờ bên kia hay không?
Người ta tiến hành đo đạc các yếu tố hình học cần thiết để tính chiều rộng của khúc sông mà không cần phải sang bờ sông bên kia (h.18). Nhìn hình vẽ đã cho, hãy mô tả những công việc cần làm và tính khoảng cách AB = x theo BC = a, B’C’ = a’, BB’ = h.
Hình 18
Lời giải:
Mô tả cách làm:
– Chọn một điểm A cố định bên mép bờ sông bên kia (chẳng hạn như là một thân cây), đặt hai điểm B và B’ thẳng hàng với A, điểm B sát mép bờ còn lại và AB chính là khoảng cách cần đo.
– Trên hai đường thẳng vuông góc với AB’ tại B và B’ lấy C và C’ thằng hàng với A.
– Đo độ dài các đoạn BB’ = h, BC = a, B’C’ = a’.