1 (trang 91 SGK Toán 9 Tập 1): Cho hình 36. Hãy viết hệ thức giữa:
a) Cạnh huyền, cạnh góc vuông và hình chiếu của nó trên cạnh huyền.
b) Các cạnh góc vuông p, r và đường cao h.
c) Đường cao h và hình chiếu của các cạnh góc vuông trên cạnh huyền p', r'
Hình 36
Trả lời:
a) p2= p'.q ; r2= r'.q
c) h2= p'.r'
2 (trang 91 SGK Toán 9 Tập 1): Cho hình 37.
a) Hãy viết công thức tính các tỉ số lượng giác của góc α
b) Hãy viết hệ thức giữa các tỉ số lượng giác của góc α và các tỉ số lượng giác của góc β.
Trả lời:
b) sin α = cos β; cos α = sin β
tg α = cotg β; cotg α = tgβ
3 (trang 91-92 SGK Toán 9 Tập 1): Xem hình 37.
a) Hãy viết công thức tính các cạnh góc vuông b và c theo cạnh huyền a và tỉ số lượng giác của các góc α, β.
b) Hãy viết công thức tính mỗi cạnh góc vuông theo cạnh góc vuông kia và tỉ số lượng giác của các góc α, β.
Trả lời:
a) b = asin α = acosβ; c = asinβ = acosα
b) b = c.tgβ = c.cotgα
4 (trang 92 SGK ập 1): Để giải một tam giác vuông, cần biết ít nhất mấy góc và cạnh? Có lưu ý gì về số cạnh?
Trả lời:
Để giải một tam giác vuông cần biết hai yếu tố trong đó có ít nhất là một yếu tố cạnh
Bài 33 (trang 93 SGK Toán 9 Tập 1): Chọn kết quả đúng trong các kết quả dưới đây:
a) Trong hình 41, sin α bằng:
b) Trong hình 42, sin Q bằng:
c) Trong hình 43, cos 30obằng:
Lời giải:
a) Chọn C
b) Chọn D
c) Chọn C vì:
Bài 34 (trang 93 SGK Toán 9 Tập 1): a) Trong hình 44, hệ thức nào trong các hệ thức sau là đúng?
b) Trog hình 45, hệ thức nào trong các hệ thức sau không đúng?
(A) sin2α + cos2α = 1
(B) sin α = cos β
(C) cos β = sin (90o – α)
Lời giải:
a) Chọn C
b) Chọn Csai
– Vì đẳng thức đúng phải là: cos β = sin(90o – β)
Bài 35 (trang 94 SGK Toán 9 Tập 1): Tỉ số giữa hai cạnh góc vuông của một tam giác vuông bằng 19: 28. Tìm các góc của nó.
Lời giải:
Kí hiệu góc như trên hình vẽ.
Tỉ số giữa hai cạnh góc vuông của một tam giác vuông là tg của góc nhọn này và là cotg của góc nhọn kia.
Giả sử α là góc nhọn của tam giác vuông đó.
Ta có:
=> α ≈ 34o10'
=> β ≈ 90o – 34o10' = 55o50'
(Lưu ý: Bạn cũng có thể sử dụng cotg để tính, nhưng cũng sẽ cho kết quả tương tự bởi vì tính chất lượng giác của 2 góc phụ nhau.)
Bài 36 (trang 94 SGK Toán 9 Tập 1): Cho tam giác có một góc bằng 45o. Đường cao chia một cạnh kề với góc đó thành các phần 20cm và 21 cm. Tính cạnh lớn trong hai cạnh còn lại (lưu ý có hai trường hợp hình 46 và hình 47).
Lời giải:
– Trường hợp hình 46: cạnh lớn trong hai cạnh còn lại được kí hiệu là x.
ΔHAB cân vì có ∠B = 45o
=> HA = HB = 20
Áp dụng định lí Pitago trong ΔHAC có:
x2 = AC2 = HA2 + HC2 = 202 + 212 = 841
=> x = 29 hay độ dài cạnh lớn trong hai cạnh còn lại là 29.
– Trường hợp hình 47: cạnh lớn trong hai cạnh còn lại được kí hiệu là y.
ΔH'A'B' cân vì có ∠B' = 45o
=> H'A' = H'B' = 21
Áp dụng định lí Pitago trong ΔH'A'B' có:
y2 = A'B'2 = H'A'2 + H'B'2 = 212 + 212 = 2.212
=> y = 21√2 ≈ 29,7 hay độ dài cạnh lớn trong hai cạnh còn lại là 29,7.
Bài 37 (trang 94 SGK Toán 9 Tập 1): Cho tam giác ABC có AB = 6cm, AC = 4,5cm, BC = 7,5cm.
a) Chứng minh tam giác ABC vuông tại A. Tính các góc B, C và đường cao AH của tam giác đó.
b) Hỏi rằng điểm M mà diện tích tam giác MBC bằng diện tích tam giác ABC nằm trên đường nào?
Lời giải:
a) Ta có: AB2+ AC2= 62 + 4,52 = 7,52 = BC2
nên tam giác ABC vuông tại A. (đpcm)
=> ∠B = 37o
=> ∠C = 90o – ∠B = 90o – 37o = 53o
Mặt khác trong tam giác ABC vuông tại A, ta có:
=> AH = 3,6 cm
b) Gọi khoảng cách từ M đến BC là MK. Ta có:
Ta thấy SMBC = SABC khi MK = AH = 3,6 cm
Do đó để SMBC = SABC thì M phải nằm trên đường thẳng song song và cách BC một khoảng là 3,6 cm (có hai đường thẳng như trên hình).
Bài 38 (trang 95 SGK Toán 9 Tập 1): Hai chiếc thuyền A và B ở vị trí được minh họa như trong hình 48. Tính khoảng cách giữa chúng (làm tròn đến mét).
Lời giải:
Trong tam giác vuông BIK có:
IB = IK.tg ∠IKB = IK.tg(50o + 15o) = 380.tg 65o ≈ 814 (m)
Trong tam giác vuông AIK có:
IA = IK.tg ∠IKA = IK.tg 50o = 380.tg50o ≈ 452 (m)
Vậy khoảng cách giữa hai thuyền là:
AB = IB – IA = 814 – 452 = 362 (m)
Bài 39 (trang 95 SGK Toán 9 Tập 1): Tìm khoảng cách giữa hai cọc để căng dây vượt qua vực trong hình 49 (làm tròn đến mét)
Hình 49
Lời giải:
Kí hiệu như hình vẽ. Theo hệ thức giữa cạnh và góc của tam giác vuông:
Trong tam giác vuông ABC:
AB = AC tan 50o = 20.tan 50o = 23,83 m
=> BD = 20tan50o – 5 = 18,83 m
Trong tam giác vuông BHD:
Vậy khoảnh cách giữa hai cọc là 24,59 m.
Bài 40 (trang 95 SGK Toán 9 Tập 1): Tính chiều cao của cây trong hình 50 (làm tròn đến đề-xi-mét)