Trang chủ » Trả lời câu hỏi bài Tính chất ba đường cao của tam giác

Trả lời câu hỏi bài Tính chất ba đường cao của tam giác

Câu 1: Cho tam giác ABC vuông tại B. Điểm nào là trực tâm của tam giác đó?

Lời giải:

Vì tam giác ABC vuông tại B nên AB ⊥ BC.

Suy ra AB là đường cao kẻ từ đỉnh A và CB là đường cao kẻ từ đỉnh C.

Vì B là giao điểm của 2 đường cao AB và CB nên B là trực tâm của tam giác ABC.

Câu 2: Cho hình bên

a, Chứng minh: CI ⊥ AB

b, Cho ∠(ACB)= 40o. Tính ∠(BID), ∠(DIE).

 Bài tập toán 7

Lời giải:

a, Trong ΔABC ta có hai đường cao AD và BE cắt nhau tại I nên I là trực tâm của ΔABC

Suy ra: CI là đường cao thứ ba.

Vậy CI ⊥ AB.

b, Trong tam giác BEC có ∠(BEC)= 90o

⇒ ∠(EBC) + ∠C= 90o (tính chất tam giác vuông)

⇒ ∠(EBC)= 90o – ∠C= 90– 40o = 50o hay ∠(IBD)= 50o

Trong tam giác vuông IDB có ∠(IDB) = 90o

⇒ ∠(IBD) + ∠(BID)= 90o (tính chất tam giác vuông)

⇒ ∠(BID) = 90o – ∠(IBD) = 90– 50o = 40o

Mà ∠(BID) + ∠(DIE) = 180o (2 góc kề bù)

Nên ∠(DIE)= 180o – ∠(BID)= 180o – 40o = 140o.

Câu 3: Cho H là trực tâm của tam giác ABC không vuông. Tìm trực tâm của các tam giác HAB, HAC, HBC.

 Bài tập toán 7

Lời giải:

Trong ABC ta có H là trực tâm nên:

AH ⊥ BC, BH ⊥ AC, CH ⊥ AB

Trong AHB, ta có:

AC ⊥ BH

BC ⊥ AH

Vì hai đường cao kẻ từ A và B cắt nhau tại C nên C là trực tâm của tam giác AHB.

Trong HAC, ta có:

AB ⊥ CH

CB ⊥ AH

Vì hai đường cao kẻ từ A và C cắt nhau tại B nên B là trực tâm của HAC.

Trong HBC, ta có:

BA ⊥ HC

CA ⊥ BH

Vì hai đường cao kẻ từ B và C cắt nhau tại A nên A là trực tâm của tam giác HBC.

Câu 4: Tam giác ABC có các đường cao BD và CE bằng nhau. Chứng minh rằng đó là tam giác cân

 Bài tập toán 7

Lời giải:

Xét hai tam giác vuông BDC và CEB, có:

∠(BDC) = ∠(CEB) = 90o

BD = CE (gt)

BC cạnh huyền chung

Suy ra: ΔBDC = ΔCEB

(cạnh huyền, cạnh góc vuông)

Suy ra: ∠(DCB) = ∠(EBC)

(hai góc tương ứng bằng nhau)

Hay ∠(ACB) = ∠(ABC)

Vậy ΔABC cân tại A.

Câu 5: Cho tam giác ABC vuông tại A, đường cao AH. Tìm trực tâm của tam giác ABC, AHB, AHC.

 Bài tập toán 7

Lời giải:

*Tam giác ABC có (BAC) = 90o

Vì CA là đường cao xuất phát từ đỉnh B nên giao điểm của hai đường này là A.

Vậy A là trực tâm của ΔABC.

*Tam giác AHB có (AHB) = 90o

Vì AH là đường cao xuất phát từ đỉnh A, BH là đường cao xuất phát từ đỉnh B nên giao điểm của hai đường này là H.

Vậy H là trực tâm của ΔAHB.

*Tam giác AHC có (AHC) = 90o

Vì AH là đường cao xuất phát từ đỉnh A, CH là đường cao xuất phát từ đỉnh C nên giao điểm của hai đường này là H.

Vậy H là trực tâm của ΔAHC.

Câu 6: Cho hình dưới. Có thể khẳng định rằng các đường thẳng AC, BD, KE cùng đi qua một điểm hay không? Vì sao?

 Bài tập toán 7

Lời giải:

Trong ΔAEB, ta có: AC ⊥ EB

Suy ra AC là đường cao xuất phát từ đỉnh A.

Trong ΔAEB, ta có: BD ⊥ AE

Suy ra BD là đường cao xuất phát từ đỉnh B.

Trong ΔAEB, ta có: EK ⊥ AB

Suy ra EK là đường cao xuất phát từ đỉnh E

Theo tính chất ba đường cao trong tam giác nên các đường thẳng AC, BD và EK cùng đi qua một điểm.

Câu 7: Cho tam giác ABC cân tại A, đường trung tuyến AM. Qua A kẻ đường thẳng d vuông góc với AM. Chứng minh rằng d song song với BC.

 Bài tập toán 7

Lời giải:

Vì ΔABC cân tại A và AM là đường trung tuyến nên AM cũng là đường cao

Ta có: AM ⊥ BC

d ⊥ AM (gt)

Vì hai đường thẳng phân biệt cùng vuông góc với đường thẳng thứ ba thì song song nhau nên ta có: d // BC.

Câu 8: Cho tam giác ABC cân tại A. Vẽ điểm D sao cho A là trung điểm của BD. Kẻ đường cao AE của ABC, đường cao AF của ACD. Chứng minh rằng ∠(EAF) = 90o.

 Bài tập toán 7

Lời giải:

Ta có: ΔABC cân tại A

AE ⊥ BC (gt)

Vì AE là đường cao của tam giác ABC nên AE cũng là đường phân giác của ∠(BAC)

Lại có: ΔADB cân tại A

AF ⊥ BD (gt)

Vì AF là đường cao nên AF cũng là đường phân giác của ∠(BAD)

Mà ∠(BAC) và ∠(BAD) là hai góc kề bù nên: AE ⊥ AF.

Câu 9: Cho tam giác ABC cân tại A, đường cao CH cắt tia phân giác của góc A tại D. Chứng minh rằng BD vuông góc với AC.

 Bài tập toán 7

Lời giải:

Vì ΔABC cân tại A nên đường phân giác của góc ở đỉnh A cũng là đường cao từ A.

Suy ra: AD ⊥ BC

Ta có: CH ⊥ AB (gt)

Tam giác ABC có hai đường cao AD và CH cắt nhau tại D nên D là trực tâm của ABC

Suy ra BD là đường cao xuất phát từ đỉnh B đến cạnh AC.

Vậy BD ⊥ AC.

Câu 10: Tam giác ABC có AB = AC = 13cm, BC = 10cm. Tính độ dài đường trung tuyến AM.

 Bài tập toán 7

Lời giải:

Vì tam giác ABC cân tại A nên đường trung tuyến AM cũng là đường cao.

Suy ra: AM ⊥ BC

Ta có: MB = MC = 1/2 BC = 1/2 .10 = 5 (cm)

Trong tam giác vuông AMB có (AMB) = 90o

Áp dụng định lý Pitago ta có:

AB2 = AM2 + MB2

Suy ra: AM2 = AB2 – MB2

= 13– 52 = 169 – 25 = 144

Vậy AM = 12 (cm)

Leave a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Scroll to Top