Bài 1. (trang 9 SGK Giải tích lớp 12)
Xét sự đồng biến, nghịch biến của các hàm số:
a) y = 4 + 3x – x2; b) y = 1/3x3 + 3x2 – 7x – 2;
c) y = x4 – 2x2 + 3; d) y = -x3 + x2 – 5.
Đáp án và Hướng dẫn giải bài 1:
1. a) Tập xác định: D = R;
y' = 3 – 2x => y' = 0 ⇔ x = 3/2
Ta có Bảng biến thiên:
Hàm số đồng biến trên khoảng (-∞; 3/2); nghịch biến trên khoảng (3/2; +∞).
b) Tập xác định: D = R;
y' = x2 + 6x – 7 => y' = 0 ⇔ x = 1, x = -7.
Bảng biến thiên:
Hàm số đồng biến trên các khoảng (-∞; -7), (1; +∞); nghịch biến trên các khoảng (-7; 1).
c) Tập xác định: D = R.
y' = 4x3 – 4x = 4x(x2 – 1) => y' = 0 ⇔ x = -1, x = 0, x = 1.
Bảng biến thiên: (Học sinh tự vẽ)
Hàm số đồng biến trên các khoảng (-1; 0), (; +∞); nghịch biến trên các khoảng (-∞; -1), (0; 1).
d) Tập xác định: D = R.
y' = -3x2 + 2x => y' = 0 ⇔ x = 0, x = 2/3.
Bảng biến thiên:
Hàm số đồng biến trên khoảng (0; 2/3); nghịch biến trên các khoảng (-∞; 0), (2/3; +∞).
Bài 2. (trang 10 SGK Giải tích lớp 12)
Tìm các khoảng đơn điệu của các hàm số:
Đáp án và Hướng dẫn giải bài 2:
a) Tập xác định: D = R{ 1 }.
Hàm số đồng biến trên các khoảng: (-∞; 1), (1; +∞).
b) Tập xác định: D = R{1}.
Bài 3. (trang 10 SGK Giải tích lớp 12)
Chứng minh rằng hàm số y = đồng biến trên khoảng (-1; 1) và nghịch biến trên các khoảng (-∞ ; -1) và (1; +∞).
Đáp án và Hướng dẫn giải bài 3:
Tập xác định: D = R. y' = ⇒ y' = 0 ⇔ x = -1 hoặc x = 1.
Bảng biến thiên:
Bài 4. (trang 10 SGK Giải tích lớp 12)
Chứng minh rằng hàm số y = đồng biến trên khoảng (0; 1) và nghịch biến trên các khoảng (1; 2).
Đáp án và Hướng dẫn giải bài 4:
Tập xác định: D = [0; 2]; y' = , ∀x ∈ (0; 2); y' = 0 ⇔ x = 1.
Bảng biến thiên:
Vậy hàm số đồng biến trên khoảng (0; 1) và nghịch biến trên khoảng (1; 2).
Bài 5. (trang 10 SGK Giải tích lớp 12)
Chứng minh các bất đẳng thức sau:
a) tanx > x (0 < x < π/2);
b) tanx > x + x3/3 (0 < x <π/2).
Đáp án và Hướng dẫn giải bài 5:
a) Xét hàm số y = f(x) = tanx – x với x ∈ [0; π/2).
Ta có: y' = – 1 ≥ 0, x ∈ [0;π/2); y' = 0 ⇔ x = 0. Vậy hàm số luôn đồng biến trên [0; π/2).
Từ đó ∀x ∈ (0; π/2) thì f(x) > f(0) ⇔ tanx – x > tan0 – 0 = 0 hay tanx > x.
b) Xét hàm số y = g(x) = tanx – x – x3/3. với x ∈ [0; π/2).
Ta có: y' = – 1 – x2 = 1 + tan2x – 1 – x2 = tan2x – x2
= (tanx – x)(tanx + x), ∀x ∈ [0;π/2 ).
Vì ∀x ∈ [0; π/2) nên tanx + x ≥ 0 và tanx – x > 0 (theo câu a). Do đó y' ≥ 0, ∀x ∈ [0; π/2). Dễ thấy y' = 0 ⇔ x = 0. Vậy hàm số luôn đồng biến trên [0; π/2). Từ đó: ∀x ∈ [0; π/2) thì g(x) > g(0) ⇔ tanx – x – x3/3 > tan0 – 0 – 0 = 0 hay tanx > x + x3/3.